Feedback

This module contains functionality related to the the feedback module for augmentation.chainlit.

Feedback

ChainlitFeedbackService

Service for handling Chainlit feedback and Langfuse integration.

This service associates feedbacks with value, comment and message, and persists information about retrieved nodes used for message generation in Langfuse database as trace scores. This allows feedback display in the Langfuse UI.

Attributes:
  • SCORE_NAME

    Name used for feedback scores in Langfuse.

  • langfuse_dataset_service

    Service for managing Langfuse datasets.

  • langfuse_client

    Client for Langfuse API interactions.

  • feedback_dataset

    Configuration for feedback dataset.

  • chainlit_tag_format

    Format string for trace retrieval tags.

Source code in src/augmentation/chainlit/feedback.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
class ChainlitFeedbackService:
    """Service for handling Chainlit feedback and Langfuse integration.

    This service associates feedbacks with value, comment and message, and persists
    information about retrieved nodes used for message generation in Langfuse database
    as trace scores. This allows feedback display in the Langfuse UI.

    Attributes:
        SCORE_NAME: Name used for feedback scores in Langfuse.
        langfuse_dataset_service: Service for managing Langfuse datasets.
        langfuse_client: Client for Langfuse API interactions.
        feedback_dataset: Configuration for feedback dataset.
        chainlit_tag_format: Format string for trace retrieval tags.
    """

    SCORE_NAME = "User Feedback"

    def __init__(
        self,
        langfuse_dataset_service: LangfuseDatasetService,
        langfuse_client: Langfuse,
        feedback_dataset: LangfuseDatasetConfiguration,
        chainlit_tag_format: str,
    ):
        """Initialize the feedback service.

        Args:
            langfuse_dataset_service: Service for managing Langfuse datasets.
            langfuse_client: Client for Langfuse API interactions.
            feedback_dataset: Configuration for feedback dataset.
            chainlit_tag_format: Format string for trace retrieval tags.
        """
        self.langfuse_dataset_service = langfuse_dataset_service
        self.langfuse_client = langfuse_client
        self.feedback_dataset = feedback_dataset
        self.chainlit_tag_format = chainlit_tag_format

        self.langfuse_dataset_service.create_if_does_not_exist(feedback_dataset)

    async def upsert(self, feedback: Feedback) -> bool:
        """Upsert Chainlit feedback to Langfuse database.

        Updates or inserts feedback as a score of associated trace and saves positive
        feedback in the associated dataset.

        Args:
            feedback: Feedback object containing value and comment.

        Returns:
            bool: True if feedback was successfully upserted, False otherwise.
        """
        trace = None
        try:
            trace = self._fetch_trace(feedback.forId)

            if self._is_positive(feedback):
                logging.info(
                    f"Uploading trace {trace.id} to dataset {self.feedback_dataset.name}."
                )
                self._upload_trace_to_dataset(trace)

            self.langfuse_client.score(
                trace_id=trace.id,
                name=ChainlitFeedbackService.SCORE_NAME,
                value=feedback.value,
                comment=feedback.comment,
            )
            logging.info(
                f"Upserted feedback for {trace.id} trace with value {feedback.value}."
            )
            return True
        except Exception as e:
            trace_id = trace.id if trace else None
            logging.warning(
                f"Failed to upsert feedback for {trace_id} trace: {e}"
            )
            return False

    def _fetch_trace(self, message_id: str) -> TraceWithDetails:
        """Fetch trace by message ID.

        Args:
            message_id: Message identifier to fetch trace for.

        Returns:
            TraceWithDetails: Found trace object.

        Raises:
            TraceNotFoundException: If no trace is found for message ID.
        """
        response = self.langfuse_client.fetch_traces(
            tags=[self.chainlit_tag_format.format(message_id=message_id)]
        )
        trace = response.data[0] if response.data else None
        if trace is None:
            raise TraceNotFoundException(message_id)
        return trace

    def _upload_trace_to_dataset(self, trace: TraceWithDetails) -> None:
        """Upload trace details to feedback dataset.

        Args:
            trace: Trace object containing interaction details.
        """
        retrieve_observation = self._fetch_last_retrieve_observation(trace)
        last_templating_observation = self._fetch_last_templating_observation(
            trace
        )
        self.langfuse_client.create_dataset_item(
            dataset_name=self.feedback_dataset.name,
            input={
                "query_str": trace.input,
                "nodes": retrieve_observation.output.get("nodes"),
                "templating": last_templating_observation.input,
            },
            expected_output={
                "result": trace.output.get("text"),
            },
            source_trace_id=trace.id,
            metadata={
                "generated_by": trace.output.get("raw").get("model"),
            },
        )

    def _fetch_last_retrieve_observation(
        self, trace: TraceWithDetails
    ) -> ObservationsView:
        """Fetch most recent retrieve observation for trace.

        Args:
            trace: Trace object containing observations.

        Returns:
            ObservationsView: Latest retrieve observation sorted by creation time.
        """
        retrieve_observations = self.langfuse_client.fetch_observations(
            trace_id=trace.id,
            name="retrieve",
        )
        return max(retrieve_observations.data, key=lambda x: x.createdAt)

    def _fetch_last_templating_observation(
        self, trace: TraceWithDetails
    ) -> ObservationsView:
        """Fetch most recent templating observation for trace.

        Args:
            trace: Trace object containing observations.

        Returns:
            ObservationsView: Latest templating observation sorted by creation time.
        """
        templating_observations = self.langfuse_client.fetch_observations(
            trace_id=trace.id,
            name="templating",
        )
        return max(templating_observations.data, key=lambda x: x.createdAt)

    @staticmethod
    def _is_positive(feedback: Feedback) -> bool:
        """Check if feedback value is positive.

        Args:
            feedback: Feedback object containing user feedback.

        Returns:
            bool: True if feedback value is greater than 0.
        """
        return feedback.value > 0

__init__(langfuse_dataset_service, langfuse_client, feedback_dataset, chainlit_tag_format)

Initialize the feedback service.

Parameters:
  • langfuse_dataset_service (LangfuseDatasetService) –

    Service for managing Langfuse datasets.

  • langfuse_client (Langfuse) –

    Client for Langfuse API interactions.

  • feedback_dataset (LangfuseDatasetConfiguration) –

    Configuration for feedback dataset.

  • chainlit_tag_format (str) –

    Format string for trace retrieval tags.

Source code in src/augmentation/chainlit/feedback.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def __init__(
    self,
    langfuse_dataset_service: LangfuseDatasetService,
    langfuse_client: Langfuse,
    feedback_dataset: LangfuseDatasetConfiguration,
    chainlit_tag_format: str,
):
    """Initialize the feedback service.

    Args:
        langfuse_dataset_service: Service for managing Langfuse datasets.
        langfuse_client: Client for Langfuse API interactions.
        feedback_dataset: Configuration for feedback dataset.
        chainlit_tag_format: Format string for trace retrieval tags.
    """
    self.langfuse_dataset_service = langfuse_dataset_service
    self.langfuse_client = langfuse_client
    self.feedback_dataset = feedback_dataset
    self.chainlit_tag_format = chainlit_tag_format

    self.langfuse_dataset_service.create_if_does_not_exist(feedback_dataset)

_fetch_last_retrieve_observation(trace)

Fetch most recent retrieve observation for trace.

Parameters:
  • trace (TraceWithDetails) –

    Trace object containing observations.

Returns:
  • ObservationsView( ObservationsView ) –

    Latest retrieve observation sorted by creation time.

Source code in src/augmentation/chainlit/feedback.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def _fetch_last_retrieve_observation(
    self, trace: TraceWithDetails
) -> ObservationsView:
    """Fetch most recent retrieve observation for trace.

    Args:
        trace: Trace object containing observations.

    Returns:
        ObservationsView: Latest retrieve observation sorted by creation time.
    """
    retrieve_observations = self.langfuse_client.fetch_observations(
        trace_id=trace.id,
        name="retrieve",
    )
    return max(retrieve_observations.data, key=lambda x: x.createdAt)

_fetch_last_templating_observation(trace)

Fetch most recent templating observation for trace.

Parameters:
  • trace (TraceWithDetails) –

    Trace object containing observations.

Returns:
  • ObservationsView( ObservationsView ) –

    Latest templating observation sorted by creation time.

Source code in src/augmentation/chainlit/feedback.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def _fetch_last_templating_observation(
    self, trace: TraceWithDetails
) -> ObservationsView:
    """Fetch most recent templating observation for trace.

    Args:
        trace: Trace object containing observations.

    Returns:
        ObservationsView: Latest templating observation sorted by creation time.
    """
    templating_observations = self.langfuse_client.fetch_observations(
        trace_id=trace.id,
        name="templating",
    )
    return max(templating_observations.data, key=lambda x: x.createdAt)

_fetch_trace(message_id)

Fetch trace by message ID.

Parameters:
  • message_id (str) –

    Message identifier to fetch trace for.

Returns:
  • TraceWithDetails( TraceWithDetails ) –

    Found trace object.

Raises:
  • TraceNotFoundException

    If no trace is found for message ID.

Source code in src/augmentation/chainlit/feedback.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def _fetch_trace(self, message_id: str) -> TraceWithDetails:
    """Fetch trace by message ID.

    Args:
        message_id: Message identifier to fetch trace for.

    Returns:
        TraceWithDetails: Found trace object.

    Raises:
        TraceNotFoundException: If no trace is found for message ID.
    """
    response = self.langfuse_client.fetch_traces(
        tags=[self.chainlit_tag_format.format(message_id=message_id)]
    )
    trace = response.data[0] if response.data else None
    if trace is None:
        raise TraceNotFoundException(message_id)
    return trace

_is_positive(feedback) staticmethod

Check if feedback value is positive.

Parameters:
  • feedback (Feedback) –

    Feedback object containing user feedback.

Returns:
  • bool( bool ) –

    True if feedback value is greater than 0.

Source code in src/augmentation/chainlit/feedback.py
177
178
179
180
181
182
183
184
185
186
187
@staticmethod
def _is_positive(feedback: Feedback) -> bool:
    """Check if feedback value is positive.

    Args:
        feedback: Feedback object containing user feedback.

    Returns:
        bool: True if feedback value is greater than 0.
    """
    return feedback.value > 0

_upload_trace_to_dataset(trace)

Upload trace details to feedback dataset.

Parameters:
  • trace (TraceWithDetails) –

    Trace object containing interaction details.

Source code in src/augmentation/chainlit/feedback.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def _upload_trace_to_dataset(self, trace: TraceWithDetails) -> None:
    """Upload trace details to feedback dataset.

    Args:
        trace: Trace object containing interaction details.
    """
    retrieve_observation = self._fetch_last_retrieve_observation(trace)
    last_templating_observation = self._fetch_last_templating_observation(
        trace
    )
    self.langfuse_client.create_dataset_item(
        dataset_name=self.feedback_dataset.name,
        input={
            "query_str": trace.input,
            "nodes": retrieve_observation.output.get("nodes"),
            "templating": last_templating_observation.input,
        },
        expected_output={
            "result": trace.output.get("text"),
        },
        source_trace_id=trace.id,
        metadata={
            "generated_by": trace.output.get("raw").get("model"),
        },
    )

upsert(feedback) async

Upsert Chainlit feedback to Langfuse database.

Updates or inserts feedback as a score of associated trace and saves positive feedback in the associated dataset.

Parameters:
  • feedback (Feedback) –

    Feedback object containing value and comment.

Returns:
  • bool( bool ) –

    True if feedback was successfully upserted, False otherwise.

Source code in src/augmentation/chainlit/feedback.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
async def upsert(self, feedback: Feedback) -> bool:
    """Upsert Chainlit feedback to Langfuse database.

    Updates or inserts feedback as a score of associated trace and saves positive
    feedback in the associated dataset.

    Args:
        feedback: Feedback object containing value and comment.

    Returns:
        bool: True if feedback was successfully upserted, False otherwise.
    """
    trace = None
    try:
        trace = self._fetch_trace(feedback.forId)

        if self._is_positive(feedback):
            logging.info(
                f"Uploading trace {trace.id} to dataset {self.feedback_dataset.name}."
            )
            self._upload_trace_to_dataset(trace)

        self.langfuse_client.score(
            trace_id=trace.id,
            name=ChainlitFeedbackService.SCORE_NAME,
            value=feedback.value,
            comment=feedback.comment,
        )
        logging.info(
            f"Upserted feedback for {trace.id} trace with value {feedback.value}."
        )
        return True
    except Exception as e:
        trace_id = trace.id if trace else None
        logging.warning(
            f"Failed to upsert feedback for {trace_id} trace: {e}"
        )
        return False