Bases: BaseEmbedder
Implementation of text node embedding operations.
Handles batch embedding generation and vector store persistence
for text nodes.
Source code in src/embedding/embedders/default_embedder.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | class Embedder(BaseEmbedder):
"""Implementation of text node embedding operations.
Handles batch embedding generation and vector store persistence
for text nodes.
"""
def save(self, nodes: List[TextNode]) -> None:
"""Save embedded nodes to vector store.
Args:
nodes: Collection of text nodes with embeddings
Note:
Creates new storage context and vector store index
"""
logging.info("Saving nodes...")
storage_context = StorageContext.from_defaults(
vector_store=self.vector_store
)
VectorStoreIndex(
nodes,
storage_context=storage_context,
embed_model=self.embedding_model,
)
def embed(self, nodes: List[TextNode]) -> None:
"""Generate embeddings for text nodes in batch.
Args:
nodes: Collection of text nodes to embed
Note:
Modifies nodes in-place by setting embedding attribute
"""
logging.info(f"Embedding {len(nodes)} nodes...")
nodes_contents = [
node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes
]
nodes_embeddings = self.embedding_model.get_text_embedding_batch(
nodes_contents,
show_progress=True,
)
for node, node_embedding in zip(nodes, nodes_embeddings):
node.embedding = node_embedding
|
embed(nodes)
Generate embeddings for text nodes in batch.
Parameters: |
-
nodes
(List[TextNode] )
–
Collection of text nodes to embed
|
Note
Modifies nodes in-place by setting embedding attribute
Source code in src/embedding/embedders/default_embedder.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | def embed(self, nodes: List[TextNode]) -> None:
"""Generate embeddings for text nodes in batch.
Args:
nodes: Collection of text nodes to embed
Note:
Modifies nodes in-place by setting embedding attribute
"""
logging.info(f"Embedding {len(nodes)} nodes...")
nodes_contents = [
node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes
]
nodes_embeddings = self.embedding_model.get_text_embedding_batch(
nodes_contents,
show_progress=True,
)
for node, node_embedding in zip(nodes, nodes_embeddings):
node.embedding = node_embedding
|
save(nodes)
Save embedded nodes to vector store.
Parameters: |
-
nodes
(List[TextNode] )
–
Collection of text nodes with embeddings
|
Note
Creates new storage context and vector store index
Source code in src/embedding/embedders/default_embedder.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | def save(self, nodes: List[TextNode]) -> None:
"""Save embedded nodes to vector store.
Args:
nodes: Collection of text nodes with embeddings
Note:
Creates new storage context and vector store index
"""
logging.info("Saving nodes...")
storage_context = StorageContext.from_defaults(
vector_store=self.vector_store
)
VectorStoreIndex(
nodes,
storage_context=storage_context,
embed_model=self.embedding_model,
)
|